Usuário(a):AlexandreG91/Testes

Origem: Wikipédia, a enciclopédia livre.
Símbolo Nome Lido como Categoria Explicação Exemplos Valor
Unicode
(hexadecimal)
Valor
HTML
(decimal)
Entidade
HTML
(named)
Símbolo
LaTeX


implicação material implica; se ... então lógica proposicional, aritmética de Heyting AB é verdade (em 3 das 4 possibilidades) ambos falsos, ambos verdadeiros ou B verdadeiro.

→ pode significar o mesmo que ⇒ (pois existe outro caso onde ele indica a relação entre domínio e contra domínio de uma função; veja tabela de símbolos matemáticos).

⊂ pode significar o mesmo que ⇒ (pois existe outro caso onde ele indica subconjunto).
x = 2 ⇒ x2 = 4 é verdadeiro, mas x2 = 4   ⇒  x = 2 é, considerando todas as possibilidades falso (considerando que o x poderia ser também −2). U+21D2

U+2192

U+2283
⇒

→

⊃
⇒

→

⊃
\Rightarrow
\to or \rightarrow
\supset
\implies


se e somente se se e somente se; sse lógica proposicional A ⇔ B é verdade apenas se A e B forem falso ou A e B forem verdadeiro.

A<->B é verdade quando (A -> B & B -> A) é verdade.
x + 5 = y + 2 ⇔ x + 3 = y U+21D4

U+2261

U+2194
&#8660;

&#8801;

&#8596;
&hArr;

&equiv;

&harr;
\Leftrightarrow
\equiv
\leftrightarrow
\iff
¬
˜
!
negação negado lógica proposicional A proposição ¬A é verdadeiro se e somente se A é falso. ¬(¬A) ⇔ A
xy ⇔ ¬(x = y)
U+00AC

U+02DC

U+0021
&#172;

&#732;

&#33;
&not;

&tilde;

&excl;
\lnot or \neg
\sim
𝔻
Domain of discourse Domain of predicate Predicate (mathematical logic) U+1D53B &#120123; &Dopf; \mathbb{D}

·
&
logical conjunction and propositional logic, Boolean algebra The statement AB is true if A and B are both true; otherwise, it is false. n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number. U+2227

U+00B7

U+0026
&#8743;

&#183;

&#38;
&and;

&middot;

&amp;
\wedge or \land
\cdot \&[1]

+
logical (inclusive) disjunction or propositional logic, Boolean algebra The statement AB is true if A or B (or both) are true; if both are false, the statement is false. n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number. U+2228

U+002B

U+2225
&#8744;

&#43;

&#8741;
&or;


&plus;


&parallel;

\lor or \vee



\parallel




exclusive disjunction xor; either ... or propositional logic, Boolean algebra The statement AB is true when either A or B, but not both, are true. AB means the same. A) ⊕ A is always true, and AA always false, if vacuous truth is excluded. U+2295

U+22BB


U+2262

&#8853;

&#8891;


&#8802;

&oplus;


&veebar;

&nequiv;

\oplus


\veebar


\not\equiv



T
1
Tautology top, truth propositional logic, Boolean algebra The statement is unconditionally true. A ⇒ ⊤ is always true. U+22A4



&#8868;


&top;


\top


F
0
Contradiction bottom, falsum, falsity propositional logic, Boolean algebra The statement ⊥ is unconditionally false. (The symbol ⊥ may also refer to perpendicular lines.) ⊥ ⇒ A is always true. U+22A5



&#8869;



&perp;



\bot

()
universal quantification for all; for any; for each first-order logic ∀ xP(x) or (xP(x) means P(x) is true for all x. ∀ n ∈ ℕ: n2 ≥ n. U+2200

&#8704;

&forall;

\forall
existential quantification there exists first-order logic ∃ x: P(x) means there is at least one x such that P(x) is true. ∃ n ∈ ℕ: n is even. U+2203 &#8707; &exist; \exists
∃!
uniqueness quantification there exists exactly one first-order logic ∃! x: P(x) means there is exactly one x such that P(x) is true. ∃! n ∈ ℕ: n + 5 = 2n. U+2203 U+0021 &#8707; &#33; &exist;! \exists !


:⇔
definition is defined as everywhere x ≔ y or x ≡ y means x is defined to be another name for y (but note that ≡ can also mean other things, such as congruence).

P :⇔ Q means P is defined to be logically equivalent to Q.


A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
U+2254 (U+003A U+003D)

U+2261

U+003A U+229C
&#8788; (&#58; &#61;)


&#8801;

&#8860;

&coloneq;


&equiv;

&hArr;

:=


\equiv

:\Leftrightarrow

( )
precedence grouping parentheses; brackets everywhere Perform the operations inside the parentheses first. (8 ÷ 4) ÷ 2 = 2 ÷ 2 = 1, but 8 ÷ (4 ÷ 2) = 8 ÷ 2 = 4. U+0028 U+0029 &#40; &#41; &lpar;

&rpar;

( )
turnstile proves propositional logic, first-order logic xy means x proves (syntactically entails) y (AB) ⊢ (¬B → ¬A) U+22A2 &#8866; &vdash; \vdash
double turnstile models propositional logic, first-order logic xy means x models (semantically entails) y (AB) ⊨ (¬B → ¬A) U+22A8 &#8872; &vDash; \vDash, \models
  1. Although this character is available in LaTeX, the MediaWiki TeX system does not support it.