Usuário(a):Horadrim/Testes1
Página inicial: Testes
Edições completas: Mecânica estatística • Modelo Hodgkin-Huxley • Neurociência computacional • Modelo probabilístico para redes neurais • Teoria de campo médio • Modelo FitzHugh–Nagumo • Processo Lévy • Cadeias de Markov • Processo de Poisson • Galves–Löcherbach model • Stochastic chains with memory of variable length • Lesão do plexo braquial • Somatotopia • Função densidade • Modelos de grafos aleatórios exponenciais • Processo de Gram-Schmidt • Equação de Chapman–Kolmogorov • Predefinição:Processos estocásticos • Algoritmo de autovalores • Transição de fase • Hipótese do cérebro crítico • Critical brain hypothesis • Passeio aleatório • Plasticidade sináptica • Potencial pós-sináptico excitatório • Potencial pós-sináptico inibitório • Modelo de Morris-Lecar • Plexo braquial • Processo gaussiano • Campo aleatório de Markov • Eletroencefalografia • Modelo de Hindmarsh-Rose • Sistemas de partícula em interação • Medida de Gibbs • Nervo escapular dorsal • Nervo radial • Nervo peitoral lateral • Nervo musculocutâneo • Medida de Dirac • Nervo torácico longo • Sigma-álgebra • Nervo peitoral medial • Nervo ulnar • Potencial evocado • Estimulação magnética transcraniana repetitiva • Teorema de Donsker • Desigualdade de Boole • Codificação neural • Aprendizado de máquina • Independência condicional • Inferência estatística • Nervo subclávio • Nervo supraescapular • Nervo mediano • Nervo axilar • Movimento browniano geométrico • Caminho autoevitante • Tempo local • Nervo subescapular superior • Nervo toracodorsal • Nervo subscapular inferior • Caminho (teoria dos grafos) • Campo aleatório • Lei do logaritmo iterado
Edições em andamento: Nervo cutâneo medial do braço (N) • Nervo cutâneo medial do antebraço (N) • Cérebro estatístico (N) • Statistician brain • Distribuição de probabilidade condicional (N) • Esperança condicional (N) • Integral de Itō (N) • Martingale • Variação quadrática (N) • Processo Ornstein–Uhlenbeck • Ruído branco • Teoria ergódica • Avalanche neuronal (N) • Teoria da percolação (N) • Função totiente de Euler • Ruído neuronal (N) • Distribuição de Poisson • Córtex cerebral • Estímulo (fisiologia)
Mecânica estatística de equilíbrio
[editar | editar código-fonte]A mecânica estatística de equilíbrio, também chamada de termodinâmica estatística, tem como objetivo derivar os princípios da [termodinâmica clássica]] dos materiais a partir de suas partículas constituintes e a interação entre as mesmas. Ou seja, a mecânica estatística de equilíbrio relaciona as propriedades macroscópicas dos materiais em equilíbrio termodinâmico com os comportamentos microscópicos ocorrendo dentro do material. Porém, enquanto a mecânica estatística envolve dinâmica, na termodinâmica estatística há o equilíbrio estatístico, ou estado estável. Isso não significa que as partículas não se movam (equilíbrio mecânico), mas sim que o ensemble não está evoluindo.
Postulado de igual probabilidade a priori
[editar | editar código-fonte]Uma condição suficiente (mas não necessária) para o equilíbrio estatístico com um sistema isolado é que a distribuição de probabilidade seja uma função somente de propriedades conservadas (energia total, o número de partículas totais, etc.). Existem muitos conjuntos de equilíbrio diferentes que podem ser considerados, e apenas alguns deles correspondem à termodinâmica. Postulados adicionais são necessários para dizer porque o conjunto para um determinado sistema deve ser de uma forma ou de outra.
Uma abordagem comum encontrada em muitos livros didáticos é usar o postulado de igual probabilidade a priori. Esse postulado diz que
- "Para um sistema isolado com uma energia conhecida com exatidão e a composição exatamente conhecida, o sistema pode ser encontrado com igual probabilidade em qualquer microestado consistente com tal conhecimento."
Portanto, o postulado de igual probabilidade a priori proporciona a base para o conjunto microcanônico descrito abaixo. Há vários argumentos a favor do postulado de igual probabilidade a priori:
- Hipótese ergódica: Um estado ergódico é aquele que evolui ao longo do tempo para explorar "todos estados acessíveis": todos aqueles com a mesma energia e composição. Em um sistema ergódico, o conjunto microcanônico é o único conjunto de equilíbrio possível com energia fixa. Esta abordagem tem aplicabilidade limitada, uma vez que a maioria dos sistemas não são ergódicos.
- Princípio da indiferença: Na ausência de quaisquer outras informações, só podemos atribuir probabilidades iguais para cada situação compatível.
- Entropia máxima: Uma versão mais elaborada do princípio da indiferença afirma que o conjunto correto é o conjunto que é compatível com a informação conhecida e que tem a maior entropia de Gibbs.
Outros postulados fundamentais para a mecânica estatística também foram propostos.
Ensembles ou conjuntos
[editar | editar código-fonte]Existem três ensembles de equilíbrio com uma forma simples, que podem ser definidos para qualquer sistema isolado delimitado dentro de um volume finito. Estes são os conjuntos mais frequentemente discutidos em termodinâmica estatística. No limite macroscópico, todos eles correspondem a termodinâmica clássica.
Conjunto microcanônico
[editar | editar código-fonte]Um conjunto microcanônico é um conjunto de réplicas de microssistemas identicamente preparados. Descreve um sistema com energia precisamente determinada e composição fixa (número preciso de partículas). Cada réplica tem os mesmos possíveis valores de massa(m), volume(V) e energia (E), mas cada uma pode evoluir diferentemente através do espaço de configurações. No conjunto microcanônico não há troca de calor entre o sistema e o exterior e o número de partículas é fixo. O conjunto microcanônico contém com igual probabilidade cada estado possível que é consistente com essa energia e composição.
Conjunto canônico
[editar | editar código-fonte]Semelhantemente, um conjunto canônico é um conjunto de réplicas de um sistema, identicamente preparados, onde cada um tem valores definidos de massa(m), volume(V) e temperatura(T). Descreve um sistema de composição fixa que se encontra em equilíbrio térmico com um banho de calor de uma temperatura precisa, ou seja, no conjunto canônico o número de partículas é fixo, mas o sistema troca calor com o ambiente. O conjunto canônico contém estados de variação de energia, mas composição idêntica; os diferentes estados no conjunto possuem diferentes probabilidades, dependendo de sua energia total.
Conjunto grão-canônico
[editar | editar código-fonte]Descreve um sistema com a composição não fixada (número de partículas incerto) que está em equilíbrio térmico e químico com um reservatório termodinâmico. Assim, no conjunto grão-canônico o sistema pode trocar calor e partículas, ou seja, o número de partículas pode variar. O reservatório tem uma temperatura precisa, e os potenciais químicos precisos para diversos tipos de partículas. O ensemble grão-canônico contém estados de variação de energia e número variado de partículas; os diferentes estados no conjunto possuem diferentes probabilidades, dependendo de sua energia total e número de partículas totais.
Para sistemas contendo muitas partículas (o limite termodinâmico), todos os três conjuntos listados acima tendem a ter um comportamento idêntico. Nesse caso, a escolha do conjunto é simplesmente uma questão de conveniência matemática.
Casos importantes onde os conjuntos termodinâmicos não dão resultados idênticos incluem:
- Sistemas microscópicos.
- Grandes sistemas em fase de transição.
- Grandes sistemas com interações de longo alcance.
Nestes casos, o conjunto termodinâmico deve ser escolhido corretamente, pois existem diferenças observáveis entre estes conjuntos não apenas no tamanho das flutuações, mas também em quantidades médias, tais como a distribuição de partículas. O conjunto correto é o que corresponde à maneira como o sistema foi preparado e caracterizado, em outras palavras, o conjunto que reflete o conhecimento sobre esse sistema.
Ensembles termodinâmicos Microcanônico Canônico Grão-canônico Variáveis fixas N, E, V N, T, V μ, T, V Características microscópicas Número de microestados
Função macroscópica Entropia de Boltzmann
Métodos de cálculo
[editar | editar código-fonte]Uma vez calculada a função de estado característica para um conjunto e sistema determinados, é possível “resolver” o sistema, ou seja, extrair dados macroscópicos observáveis. No entanto, calcular a função de estado característico de um conjunto termodinâmica não é necessariamente uma tarefa simples, pois envolve considerar todos os estados possíveis do sistema. Enquanto alguns sistemas hipotéticos foram resolvidos, em geral os casos são muito complexos para uma solução exata. Existem várias abordagens para se aproximar do verdadeiro conjunto e permitir o cálculo das quantidades médias.
Exato
[editar | editar código-fonte]Existem alguns casos que permitem soluções exatas.
- Para sistemas microscópicos muito pequenos, os conjuntos podem ser diretamente calculados simplesmente ao enumerar todos os estados possíveis do sistema (usando diagonalização exata na mecânica quântica, ou integral sobre todo o espaço de fase na mecânica clássica).
- Alguns sistemas grandes consistem em muitos sistemas microscópicos separáveis, e cada um dos subsistemas pode ser analisado de forma independente. Notavelmente, gases ideais de partículas que não interagem têm essa propriedade, permitindo derivações exatas de estatísticas de Maxwell-Boltzmann, estatísticas de Fermi-Dirac e as estatísticas de Bose-Einstein.
- Alguns sistemas grandes com interação foram resolvidos. Alguns exemplos incluem o ansatz de Bethe, modelo de Ising na rede quadrada em campo zero, e o modelo de hexágono duro.
Monte Carlo
[editar | editar código-fonte]Uma abordagem aproximada que é particularmente bem adaptada para computadores é o método de Monte Carlo, que examina apenas alguns dos possíveis estados do sistema, com os estados escolhidos aleatoriamente (com um peso justo). Se esses estados formarem uma amostra representativa de todo o conjunto de estados do sistema, a função característica aproximada é obtida. Com mais e mais amostras aleatórias incluídas, os erros são reduzidos a um nível arbitrariamente baixo.
- O algoritmo de Metropolis-Hastings é um clássico método de Monte Carlo que foi inicialmente utilizado para o conjunto canônico.
- Integração de Monte Carlo, também usado com o conjunto canónico.
Outros
[editar | editar código-fonte]- Para gases não ideais rarefeitos, abordagens tais como a expansão de cluster usam a teoria de perturbações para incluir o efeito de interações fracas, levando a uma expansão do virial.
- Para fluidos densos, uma outra abordagem aproximada é baseada em funções de distribuição reduzidas, em particular, a função de distribuição radial.
- Simulações computacionais da dinâmica molecular podem ser usado para calcular médias de conjunto microcanônicos, em sistemas ergódicos. Com a inclusão de uma ligação a um banho de calor estocástica, eles também podem modelar conjuntos canônicos e grão-canônicos.
- Métodos mistos envolvendo resultados da mecânica estatística do não-equilíbrio também podem ser úteis.
Mecânica estatística de não-equilíbrio
[editar | editar código-fonte]Há muitos fenômenos físicos de interesse que envolvem processos quase-termodinâmicos fora do equilíbrio, por exemplo:
- Transporte de calor pelos movimentos internos em um material, impulsionado por um desequilíbrio de temperatura,
- Correntes elétricas transportadas pelo movimento de cargas em um condutor, impulsionado por um desequilíbrio de tensão,
- Reações químicas espontâneas levadas por uma diminuição da energia livre,
- Fricção, dissipação, decoerência quântica,
- Sistemas de ser bombeado por forças externas (bombeamento óptico, etc),
- E processos irreversíveis em geral.
Todos estes processos ocorrem ao longo do tempo com uma razão características, e essas são de grande importância para cálculos de engenharia. O campo da mecânica estatística de não-equilíbrio está preocupado com a compreensão destes processos de não equilíbrio no nível microscópico.
A mecânica estatística de não-equilíbrio pode ser matematicamente exata: conjuntos para um sistema isolado evoluem ao longo do tempo de acordo com equações deterministas, tais como a equação de Liouville ou seu equivalente quântico, a equação de von Neumann. Estas equações são o resultado da aplicação das equações mecânicas do movimento de forma independente para cada estado no conjunto. Infelizmente, estas equações de evolução do conjunto herdam muito da complexidade do movimento mecânico subjacente, e as soluções de forma exata são muito difíceis de obter. Além disso, as equações de evolução do conjunto são totalmente reversíveis e não destroem a informação (a entropia Gibbs do conjunto é preservada). A fim de avançar na modelagem de processos irreversíveis, é necessário adicionar ingredientes além da probabilidade e da mecânica reversível.
Métodos estocásticos
Uma abordagem para a mecânica estatística de não-equilíbrio é incorporar o comportamento estocástico (aleatório) para dentro do sistema. O comportamento estocástico destrói informações contidas no conjunto. Embora isso é tecnicamente impreciso (com exceção de situações hipotéticas que envolvem buracos negros, um sistema não pode, por si só causar perda de informações), a aleatoriedade é adicionada para refletir que informações de interesse se convertem ao longo do tempo em correlações sutis dentro do sistema, ou correlações entre o sistema e o ambiente. Essas correlações aparecem como influências caóticos ou pseudo-aleatórios sobre as variáveis de interesse. Ao substituir essas correlações com aleatoriedade adequada, os cálculos podem ser feitos muito mais fácilmente.
Equação de transporte de Boltzmann: Uma forma inicial da mecânica estocástica apareceu antes mesmo de o termo "mecânica estatística" ter sido inventado, em estudos de teoria cinética. James Clerk Maxwell tinha demonstrado que as colisões moleculares levariam ao movimento aparentemente caótico dentro de um gás. Ludwig Boltzmann posteriormente mostrou que, ao tomar esse caos molecular como dado em uma randomização completa, os movimentos das partículas em um gás seguiriam uma equação de transporte de Boltzmann que rapidamente restauraria um gás para um estado de equilíbrio.
A equação de transporte de Boltzmann e abordagens relacionadas são ferramentas importantes na mecânica estatística de não-equilíbrio devido à sua extrema simplicidade. Essas aproximações funcionam bem em sistemas onde a informação "interessante" é imediatamente (depois de apenas uma colisão) misturada em correlações sutis, que essencialmente as restringe para gases rarefeitos. A equação de transporte de Boltzmann é muito útil em simulações de transporte de elétrons em semicondutores levemente dopado (em transistores), onde os elétrons são de fato análogos a um gás rarefeito.
Uma técnica quântica relacionada no tema é a aproximação de fase aleatória.
Hierarquia BBGKY: No caso de líquidos e gases densos, não é válido descartar imediatamente as correlações entre as partículas depois de uma colisão. A hierarquia BBGKY (hierarquia Bogoliubov-Born-Green-Kirkwood-Yvon) dá um método para derivar as equações do tipo Boltzmann, mas também as estendendo para além do caso do gás diluído, para incluir correlações após algumas colisões.
Formalismo de Keldysh (também chamadas de NEGF, ou funções de Green fora do equilíbrio): é uma abordagem quântica para incluir a dinâmica estocástica. Esta abordagem frequentemente é usada em cálculos de transporte quântico eletrônicos.
Métodos de quase-equilíbrio
[editar | editar código-fonte]Outra classe importante de modelos mecânicos estatísticos de não-equilíbrio lida com sistemas que são apenas muito ligeiramente perturbados do equilíbrio. Com perturbações muito pequenas, a resposta pode ser analisada na teoria de resposta linear. Um resultado notável, tal como formalizado pelo teorema de flutuação-dissipação, é que a resposta de um sistema quando próximo do equilíbrio é precisamente relacionada às flutuações que ocorrem quando o sistema está em equilíbrio total. Essencialmente, um sistema que é pouco longe do equilíbrio - seja por forças externas ou por flutuações - relaxa para o equilíbrio da mesma forma, uma vez que o sistema não pode dizer a diferença ou "saber" como ele veio a ser afastado do equilíbrio.
Essa é uma via indireta para a obtenção de números como a condutividade ôhmica e a condutividade térmica, extraindo os resultados da mecânica estatística de equilíbrio. Considerando que a mecânica estatística de equilíbrio é matematicamente bem definida e (em alguns casos) mais favorável para os cálculos, a conexão de flutuação-dissipação pode ser um atalho conveniente para cálculos em mecânica estatística de quase equilíbrio.
Algumas das ferramentas teóricas utilizadas para fazer esta conexão incluem:
- Teorema de flutuação-dissipação
- Relações recíprocas de Onsager
- Relações de Green-Kubo
- Formalismo de Landauer-Büttiker
- Formalismo de Mori-Zwanzig
Métodos híbridos
[editar | editar código-fonte]Uma abordagem avançada usa uma combinação de métodos estocásticos e teoria de resposta linear. Por exemplo, uma abordagem para calcular os efeitos quânticos de coerência (localização fraca, flutuações de condutância) na condutância de um sistema eletrônico é a utilização das relações de Green-Kubo, com a inclusão de desfasamento estocástico via interações entre vários elétrons utilizando o método de Keldysh.